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a b s t r a c t

Coastal island communities face significant risks associated with increased natural hazards

and other impacts associated with climate change. Further, deeply rooted social issues, lack

of awareness or information, and inadequate infrastructure and planning may exacerbate

risks to island socio-ecological systems. Understanding these relationships is often difficult,

given the lack of methods available for communities to explicitly explore anticipated risks

and potential adaptation strategies, in relation to the characteristics of their community

socio-ecological system. Social learning has also been shown to foster adaptation to

environmental changes, build social trust and empower diverse stakeholders, by offering

opportunities for groups of individuals to challenge, negotiate and propose new norms,

policies or programs. We present a three-phase social learning framework to facilitate

stakeholder-driven scenario-based modeling, in order to inform community disaster plan-

ning in relation to the potential impacts of a tsunami. The participatory research was

conducted in conjunction with a community disaster committee, representing the commu-

nities of the North Shore of O‘ahu, Hawai‘i. Through a series of iterative participatory

modeling workshops using fuzzy-logic cognitive mapping, the community committee

represented, explored and actively questioned their beliefs about the natural hazards that

their community faces. Further, the modeling process allowed the committee to represent

the communities’ dynamic nature, run tsunami hazard scenarios to quantify potential

direct and indirect effects, and explicitly compare trade-offs of competing adaptation

strategies. Changes in the committee’s model representations that took place over time

demonstrate a progression through single-, double- and triple-loop learning, indicating that

social learning occurred across individual to institutional levels, and over short- to long-

term time scales.
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1. Introduction

The Hawaiian Islands are vulnerable to natural hazards and

the impacts of climate change, due to their geographic

remoteness and large dependency upon imported food and

energy (Kaly et al., 2002). Historically, communities comprised

of native Hawaiians and long-term residents have utilized

place-based strategies to maintain their resilience, however

community members now report that fragmentation, tourism

and globalization have weakened the collective social memory

and legacy effects of past disasters (Vaughan and Ardoin,

2013). As a result, these communities are more prone to rely on

aid after a disaster occurs, which does not improve long-term

adaptive capacity (Birkmann, 2006). A comprehensive multi-

sector approach is needed to improve disaster planning and

build more resilient communities (Folke et al., 2002; Walker

et al., 2002). Analysis of key physical, social, economic and

environmental system factors is critical in order to reduce

vulnerability and enhance coastal resilience to long and short

term ‘‘shocks’’ to these communities (Birkmann, 2006). This

includes developing methods for communities to collabora-

tively articulate the potential impacts of hazards and climate

change, in order to define the anticipated outcomes of various

adaptation strategies.

Community-based resilience planning will have a higher

probability of success if stakeholder-driven community

descriptions, community resources and the issues of concern

(Abarquez and Murshed, 2004; Adger, 2003; TRIAMS, 2006;

USAID, 2007) can be formalized into a set of scenarios that

capture the major uncertainties in the system’s future

dynamics (Walker et al., 2002). This paper outlines a method-

ology that standardizes diverse stakeholder knowledge and

management strategies in a form that maintains the integrity

of complex human understanding and is useful for analyzing

a community’s dynamics in relation to natural hazards.

Additionally, we present data that measure changes in the

community’s model over time as evidence of conceptual

change among community members. This research draws

from several distinct yet related bodies of literature on: (1)

representing individually held beliefs (e.g. mental models) in

the planning process; (2) allowing agreement or inconsisten-

cies in beliefs to be discussed as a way to facilitate structured

social learning; and (3) understanding how learning occurs as a

result of engaging in scenario analysis to improve the adaptive

capacity of communities in relation to environmental change.

To adapt to change, communities must be able to anticipate

a problem, collect and share knowledge about it, reflect, and

together develop a shared vision for action (Tschakert and

Dietrich, 2010). However, tools and processes that promote

such interaction in an organized and participatory manner in

real time are somewhat limited (Walker et al., 2002; Gray et al.,

2013) although significant advances have occurred in recent

years (Voinov and Bosquet, 2010). Here, we suggest that

actively representing individual and group beliefs through a

mental modeling exercise, facilitated by the development of

fuzzy-logic cognitive mapping (FCM) supports structured

deliberation around coastal hazards and provide a way for

diverse community members to construct and revise their

knowledge over time.
Mental models are individually and internally held cogni-

tions of external reality that are used to code, filter, and

interpret the external world, allowing individuals to reason,

explain and interact with their surroundings (Jones et al.,

2011). Mental model representations enable individuals to

reason and make decisions, similar to a computer simulation,

allowing different scenarios to be examined (Johnson-Laird,

1983). Sharing mental models is a conduit to improve

stakeholder communication and reduce collaboration bar-

riers, by (1) utilizing visual participatory processes contribut-

ing to clear and open communication; (2) overcoming

obstacles to incorporating multiple sources of knowledge

(Rodela, 2011; Reed et al., 2010); (3) enabling shared ownership

of a conservation plan (van der Wal et al., 2014); and (4)

improving social assessments (Biggs et al., 2011).

Change in mental models is considered to be a type of

learning (Chi, 2008). Mental models can be changed through

interactions between stakeholders of a given social network

(Reed et al., 2010) by sharing ideas through a deliberative

process that facilitates social learning. Promoting learning

through guided interaction has been found to foster under-

standing of socio-ecological systems (Walters and Holling,

1990; Walters, 1986; Reed et al., 2010; Holling, 1978). Social

learning has also been shown to foster adaptation to

environmental changes (Pahl-Wostl et al., 2007; Folke et al.,

2003), build social trust and empower diverse stakeholders

(Reed et al., 2010), by offering opportunities for groups of

individuals to challenge, negotiate and propose new norms,

policies or programs (Reed et al., 2010; Rist et al., 2007).

A social network’s characteristics also play a significant

role in the type of learning that occurs (Pahl-Wostl and Hare,

2004; Wildemeersch, 2007). These networks are not uniform

and vary across space and time scales. Some networks, such

as governmental hierarchies, may be inflexible and limit the

degree of learning that takes place, while others, such as

friendships, may be more flexible and democratic and

facilitate more rapid change in personal understanding (Reed

et al., 2010; Keen et al., 2005). The speed at which learning and

information sharing occurs within a network (Pahl-Wostl

et al., 2007; Tompkins and Adger, 2004) influences the ability of

individuals to reorganize after a hazard event and therefore

influences adaptive capacity. Fazey et al. (2007) state four

learning-related requirements for adaptation, including: (1)

the willingness to challenge and transform epistemological

and cultural ways of thinking, knowledge and behaviors

toward socio-ecological resilience from the individual to

societal level; (2) a thorough understanding of how current

practices and behaviors influence socio-ecological resilience

and re-directing them toward more sustainable goals; which

will support (3) the willingness to engage in proactive,

continuous assessment of current behavioral impacts on

sustainability, in order to inform decision-making amidst

uncertainty; and (4) the ability to change their behavior based

upon these requirements (Fazey et al., 2007).

Anticipatory learning that addresses adaptation is

expected to increase community understanding and the

ability to respond to system crises and shocks (Tschakert

and Dietrich, 2010). Community disaster planning should

provide opportunities for stakeholders to communicate

iteratively (Osbahr, 2007), evaluate risks and adaptation
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options, learn from mistakes (Adger, 2003) and innovate

(Armitage, 2005) amidst uncertainty, emerging events under

past, present and future conditions (Nelson et al., 2007) and

new information (McGray et al., 2007). The relationships

between anticipatory learning, adaptation and resilience can

be linked to Holling’s (1986, 2004) illustrations of adaptive

cycles, which identify two types of learning that may

contribute to adaptation and resilience (Tschakert and

Dietrich, 2010; Holling, 1986, 2004). The first consists of small

and fast cycles of learning, such as immediate to midterm

adaptation strategies for common and acute stressors like

floods. This impacts the second type of learning, which

consists of larger and slower cycles that elicit long-term social

memory, legacy effects and knowledge, needed to achieve

longer-term resilience and adaptation (Holling, 2004). Learn-

ing that occurs during repeated small and fast cycles is

thought to cumulatively provide a new perspective on larger

and slower cycles, helping stakeholders and communities

better adapt to system changes, although empirical evidence

to support this claim is currently lacking.

Learning is not linear, but is an iterative process with

multiple feedback or ‘‘learning loops’’ (Fig. 2) that not only

occurs on different temporal scales, but also differs based on

the degree of reflection that occurs (Reed et al., 2010; Jones

et al., 2011; Biggs et al., 2011). Single-loop learning refers to

learning based on norms and beliefs that act as filters of

incoming information, particularly that which does not

resonate with previously held beliefs. This type of learning

is thought to happen when individuals represent their

knowledge at a specific moment in time (Biggs et al., 2011;

Argyris, 2005). Double-loop learning includes active question-

ing about previously held beliefs or information, which may

lead to more fundamental changes to an individual mental

model (Biggs et al., 2011; Argyris, 2005) or shared through

representation of group understanding (van der Wal et al.,

2014) which provides an opportunity for understanding to be

discussed and revised. Double-loop learning is often the

minimum target of many environmental research and

planning frameworks since it indicates a reflection, and

potential revision, of previously held beliefs (Biggs et al.,

2011). The most metacognitive form of learning is triple-loop

learning, which probes underlying norms, assumptions, and

values, and can result in changes in attitudes, and behaviors

(Peschl, 2007; Biggs et al., 2011; Altman and Illes, 1998).

2. Participatory research approach and
methods

2.1. Mental models and fuzzy cognitive mapping (FCM)

This research uses representations of the beliefs held by

communities collected through a fuzzy-logic cognitive map-

ping (FCM) technique to facilitate social learning. Fuzzy

cognitive maps are highly structured and parameterized

versions of concept maps that represent direct and indirect

causality, combining aspects of fuzzy-logic, neural networks,

semantic networks and nonlinear dynamic systems (Glykas,

2010) in a stock-and-flow representation based upon individ-

ual or group beliefs (Gray et al., 2014). Because these cognitive
maps are a relatively simple-to-use form of semi-quantitative

modeling, they have been appropriated by a wide variety of

disciplines to understand the behaviors of many complex

systems (Glykas, 2010). This is because FCMs can be collected

using qualitatively (e.g. low, medium, high) or quantitatively

assigned weighted edges (between �1 and 1), which are easy to

collect from stakeholders that can be used to define

mathematical pairwise associations. Using these pairwise

relationships, the structure between the concepts can be used

to calculate the cumulative strength of connections between

elements with weighted edges, highlighting any domain as a

system. Further, FCM’s can be used to develop semi-

quantitative scenarios, allowing stakeholders to understand

the current and projected states of systems represented with

FCM (see Ozesmi and Ozesmi, 2004). Using FCM with

communities to represent their collective beliefs about a

particular problem allows them to: (1) represent their current

understanding and learn from each other in the modeling

building process (single-loop learning); (2) reflect critically on

their current beliefs and assumptions (double-loop learning)

after a model is constructed; and (3) run scenarios to evaluate

the completeness of their previous beliefs and assumptions

(triple-loop learning). Additionally, while FCMs are a popular

method to understand the dynamics of many social–ecological

systems (Glykas, 2010), rarely are they developed iteratively

over time with stakeholders and used as a measure of

conceptual change.

In this paper, we propose a conceptual framework that

seeks to address the micro (short-term), meso (short-to-

midterm) and macro (long-term) scales of social learning to

promote change in a community’s individual and group

beliefs, as well as to achieve single-, double- and triple-loop

learning (respectively) utilizing a ‘mental modeling’ exercise

(Gray et al., 2013). Ultimately, this facilitates construction of

measurable targets and benchmarks for community risk

reduction and adaptation planning.

A novel computer-based FCM tool called Mental Modeler

(Gray et al., 2013) was used during the planning process to: (1)

iteratively construct and revise visual representations of

stakeholders’ mental models, to ultimately develop a consen-

sus community model; (2) use these models to understand

how communities anticipate being impacted by hazards; (3)

define preferred targets for components of their community;

and (4) model the impact of potential adaptation strategies.

This approach facilitates the exploration of the dynamics and

learning features of mental model representations by collect-

ing and standardizing individual and collective community

knowledge using simple modeling tasks (Ozesmi and Ozesmi,

2004; Gray et al., 2012) in a real-time and participatory

modeling environment (Gray et al., 2013).

2.2. Study location and participants

The study took place on the North Shore of the Island of O‘ahu

(North Shore), a semi-rural area with tourism as the primary

economic sector, followed by agriculture (DBEDT, 2011). The

study area includes the communities of Mokuleia, Waialua,

Haleiwa, Pupukea and Sunset Beach, up until Turtle Bay Resort

(Fig. 1), an area with an estimated population of 25,000 long-

term residents, transient residents, visitors and employees of
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local businesses at any given time (DBEDT, 2011). The North

Shore is at-risk to multiple coastal hazards, and when

experiencing a hazard becomes isolated, since access roads

quickly become inundated. A single two-lane coastal highway

provides the only entrance/exit from the area, and heavy

weekend traffic is a major concern for residents. Since the

North Shore is at-risk to hurricane, coastal storms, flooding,

landslides and rock fall, wildfire, earthquake, and tsunami

generated from earthquakes or massive landslides, originat-

ing anywhere in the Pacific Ring of Fire or the neighboring Big

Island (Fletcher et al., 2002; State of Hawai‘i Hazard Mitigation

Plan, 2010), this road can become closed, leaving the

population stranded. The North Shore was engaged as the

case study site, hereafter referred to as the ‘‘community’’ or

socio-ecological system of interest, via the community

disaster committee, to demonstrate our planning process

based on their (1) geographic isolation and physical vulnera-

bility to natural hazards (HSCD, 2010) and climate change

(DBEDT, 2011; Fletcher et al., 2002); and (2) the desire of

community members and stakeholders to engage in a

resilience research and planning process.

To engage the community in a local planning process,

researchers collaborated with a pre-organized community-

based disaster preparedness committee, which formed in 2008

following a flooding disaster event in order to raise awareness

and increase community preparedness for disasters. The

North Shore Community Disaster Planning Committee (here-

after referred to as committee) agreed to engage in a participa-

tory modeling process to assist them with developing a

community disaster plan, wherein representatives from the

communities and partnering stakeholders would participate

in a series of planning workshops. Four participatory mental

modeling workshops were held with the committee. Work-

shop participation ranged from 6 to 15 people, where 10

participants attended one workshop, five participants

attended two, two participants attended three, and three

participants attended all four workshops. The committee had

been working together over a long period of time, and made

significant efforts to engage all key stakeholder groups such
that the group represented a diverse cross-section of the

community’s diverse residents, businesses and various local,

County and State organizations and institutions. The com-

mittee included community leaders, governmental emergen-

cy management departments at the County and State levels,

non-governmental organizations including the American Red

Cross, faith-based organizations, public health nurses, private

landowners, the Port Authority, businesses via the North

Shore Chamber of Commerce, and police officers. Given the

committee’s history and established governance structure,

the committee had a well-organized electronic communica-

tion protocol that assisted in keeping everyone engaged in the

process, albeit not being able to attend a particular meeting.

2.3. Research framework

To facilitate social learning and disaster planning in the

participatory workshops, we used an FCM-based software

called Mental Modeler (Gray et al., 2013), which allowed the

committee to iteratively represent and revise their collective

understanding throughout the process. Using an FCM ap-

proach in a three-phase process, project facilitators standard-

ized, aggregated and revised the committee’s understanding

of the structure and dynamics of the community in relation to

a tsunami hazard, that which the committee identified as their

top concern. Each phase was designed to guide the committee

through higher order learning loops (Fig. 2) across short to

long-term time scales, implicating influence extending from

the individual stakeholder-scale, to social network and

ultimately institutional domains.

Phase I focused on project organization and a workshop

targeting short-term single-loop learning of individual stake-

holders of the committee, through the development of two

small group shared models of their community. Phase II

included merging the small group mental model representa-

tions, building consensus on the structure and dynamics of

their community, and understanding the potential impacts of

tsunami in order to target double-loop learning within the

social network domain of influence. Through running iterative

scenarios representing the anticipated impacts of a tsunami,

compared with potential impacts under proposed adaptation

strategies, Phase III enabled institutional-level processes

through challenging local to State-level plans and protocols

influencing tsunami risk, eliciting triple-loop, longer-term

learning. The four most effective adaptation strategies for

achieving disaster-planning targets were examined more

closely by the committee and developed into an implemen-

table action plan, including benchmarks for monitoring and

evaluation.

2.4. Phase I: small group modeling and single-loop
learning

Occurring in the micro time scale of social learning, the first

phase focused on consensus-building with the committee

around community adaptation planning procedures, methods

and goals, representing their current understanding of their

community socio-ecological dynamics. These included social,

political, cultural, environmental, institutional, physical and

environmental components and the influential relationships
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between them. The first workshop consisted of dividing the

committee into two small groups of 7 and 8, respectively,

representing diverse community, governmental and institu-

tional constituents. These small groups were charged with

developing fuzzy-logic cognitive maps of their community

based on their current beliefs, expertise and experiences. To

facilitate this, the two small groups completed the following

activities: (1) brainstormed the key components, assets and

resources that group members’ perceived to comprise their

community system; and (2) defined the dynamic and

networked relationship between these components, in terms

of their direction (unidirectional or bidirectional) and degree

(low, medium, or high) of positive or negative influence

between components.
To develop their models, community members used the

Mental Modeler software (www.mentalmodeler.org), which

facilitates the FCM process, allowing components and the

relationships between components to be defined based on

automated FCM parameters. Qualitative symbologies of

positive (+), negative (�) and neutral (0) (no influence between

concepts) relationships are thus translated by the software

into quantitative values, varying from low (0.25), medium (0.5)

and high (1.0). These components and their relationships were

considered to represent the small group’s understanding of

their community’s dynamics at the start of the planning

process.

Fig. 3 represents a FCM constructed using Mental Modeler for

one small group. The blue lines indicate positive relationships

http://www.mentalmodeler.org/
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and the red lines indicate negative relationships, with arrows

indicating directionality of the component influencing the

other. Line thickness indicates the strength of relationships

between variables, with thicker lines indicating stronger

relationships. For example, the component ‘‘Pets/livestock’’

influenced the component ‘‘Evacuation,’’ such that this

component increases jointly with ‘‘Evacuation.’’ However,

‘‘Evacuation’’ increasing is not expected to increase ‘‘Pets/

livestock.’’ In other cases, the influence runs in both directions,

as is the case with ‘‘First Responders’’ and ‘‘Disaster awareness

and planning.’’ Thus, individuals were presented with new

ideas from various members, challenging individual mental

models or understandings of community. This initial phase

generated much discussion as the group debated the commu-

nity system model and definitions of its components, resulting

in first-order (e.g. single-loop learning) understanding of their

community dynamics (Biggs et al., 2011; Argyris, 2005).

In between the first and second workshop, the two small

group mental model representations were merged into one by

constructing an adjacency matrix (Ozesmi and Ozesmi, 2004;

Laszlo et al., 1996; Kosko, 1987, 1992a,b) using a mean

approach, averaging values for common components and

relationships, sometimes referred to as a ‘‘social cognitive

map’’ (Ozesmi and Ozesmi, 2004). Merging the two group

models into a single model was done in order to create a

representation of community dynamics that included both

groups’ beliefs and relationships (e.g. a positive value in one

small group model and a negative value in the other decreased

the strength of the causal relationship, whereas agreement

reinforced it) (Kosko, 1992a,b). For example, one small group
purported that the impact of the number of visitors would

have a low negative influence on the component ‘‘Commu-

nications and Logistics Demand’’ whereas the other small

group indicated a high positive influence; this conflicting

valuation decreased the strength of the causal relationship to

be a low positive influence, whereas agreement on the

influence of the component ‘‘# of First Responders’’ was

indicated to have a high positive influence on ‘‘Disaster

Awareness and Planning’’ in both small groups, the resulting

consensus value was thus a reinforced high positive value.

This provided a representation of the knowledge shared by

both small groups, to be used for revision and debate about the

structure and dynamics of the model of their community.

2.5. Phase II: consensus modeling and double-loop
learning

Taking place in the meso-scale, the second workshop was

designed to enable the committee, then participating as a

single larger group, to evaluate a representation of the

combined knowledge of the two groups, and use this model

as artifact for discussion and revision of their ideas, in order to

produce a singular model that represented consensus among

committee members. To facilitate this, participants evaluated

the social cognitive map produced by the two groups during

the second workshop. All of the concepts included by

combining the first two models were evaluated individually,

until a final list of components was agreed upon. Secondly, all

relationships and their degree of influence between compo-

nents were evaluated until overall agreement was reached
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(Fig. 4). As the entire committee continued to examine the

merged community model, and later refined it as the

consensus community model under tsunami, the active

questioning of the groups’ understanding of the community

system led to changes to the committee’s shared representa-

tion of the group’s understanding. According to Biggs et al.

(2011) and Argyris (2005), this indicates that double-loop

learning has occurred, as the initial community model

representation was altered to become a new representation

of knowledge distinct from the committee’s understanding at

the onset of the planning process.

2.6. Phase III: scenario modeling and triple-loop learning

At the end of the second workshop following the consensus

model development, the committee structurally added the

hazard tsunami to their community model, identifying the

direct relationships and the degree of influence that a

tsunami might have on the components included in the

consensus model. This allowed for the impact of a tsunami to

be calculated using the FCM scenarios (Ozesmi and Ozesmi,

2004) constructed using Mental Modeler (Gray et al., 2013), in

order to illustrate how a tsunami might affect each

component either directly or indirectly based on the

dynamics defined in the consensus model. Thus, the total

impacts of a tsunami, as represented by the relative change

in each component in the community system, could be

examined in the third workshop.

The third workshop began with a review of the tsunami

scenarios results, along with a discussion of potential

strategies that might prevent (avoid), mitigate or enable

adaptation around the unwanted outcomes. Collectively,

the committee generated four distinct adaptation strategies

(Table 2), which were added as components and structurally

related to the consensus model. Adding each strategy to the

model defined the perceived manner in which each strategy

was anticipated to relate to the functional dynamics of the

community. Next, scenarios were again run, which included
Fig. 4 – Community consensus mode
evaluating the relative impact of each adaptation strategy in

relation to the tsunami scenario (Fig. 5).

Finally, a fourth workshop was conducted to review these

scenario outcomes, in order to quantify the efficacy of the

proposed adaptation strategies in achieving the desired

results and addressing the underlying root causes of vulnera-

bility. The committee categorized their preferences for a

change in value for each concept included in the consensus

model as desirable to increase, desirable to decrease or no preference

(Tables 2 and 3), in order to better evaluate the scenario results

(Fig. 5). The committee discussed the output for each strategy,

focusing on the potential underlying causes of the negative

impacts. The indirect relationships, which were not anticipat-

ed by committee members, resulted in a more thorough

examination of each strategy.

3. Results

3.1. Phase I: small group modeling and single-loop
learning

Evidence of the conceptual change that occurred as individu-

als learned from each other, is based on comparing the

structural metrics in the small group, merged and consensus

models (Table 1). Workshop 1 facilitated the building of two

small group models representing the understanding of the

community as they began the planning process. These models

included 24 and 23 concepts with 60 and 65 relationships

defined, respectively. Following Workshop 1, these models

were merged into a common model, with 23 components and

75 connections, which was utilized as an artifact for discus-

sion and further revision to yield a consensus model

(Workshop 2) with 20 concepts and 57 connections. When

the structure of the two small group models are compared to

the structure of the merged model and the following

consensus model, group knowledge about the major concepts

and connection between concepts was refined, since the
l collected from the community.
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number of concepts included in the model was reduced

through deliberation (from 24 to 23, and finally 20), along with

refinement of the number of connections (from 75 to 57) due in

part to the reduction in the number of components. This

provides evidence that individuals reflected upon their beliefs

of the community system, learned from each other over

participatory discussions of the model iterations, improved

their understanding of their community system. This is

therefore proposed as evidence of single-loop learning among

workshop participants (Reed et al., 2010; Fazey et al., 2007).

The number of connections to the number of variables or

connections represented measures the degree of connected-

ness between concepts, which increased from 2.5 and 2.826 in

the first workshop small group models, to 3.261 in the merged

model, and 2.85 in the consensus model, again likely due to the

decrease in the total number of components and the

connections between them. These progressive changes in
model metrics indicate that collaboration and knowledge-

sharing resulted in a more connected perception and

understanding of the system, illustrating social learning (Reed

et al., 2010; Fazey et al., 2007) and provide evidence that single-

loop and double-loop learning occurred.

In addition, each concept included in the model can be

categorized as a transmitter variable (arrow only defined

outward from concepts with no directed relationships flowing

into variables), receiver variable (arrow only defined inward

toward a concept with no directed relationships flowing out

from a variable) or ordinary variable (arrow flowing into and

out from a variable). The relationship between transmitter and

receiving variables provides a ‘‘complexity score’’ (Ozesmi and

Ozesmi, 2004; Gray et al., 2014) for models, which signifies

whether systems are perceived to be less complex when many

transmitters are represented with only a few outcomes

(receiver variables) of those pressures represented. The



Table 1 – Structural metrics of the small group models, merged model and community consensus model, under tsunami
only.

Structural metric Small group
A model

Small group
B model

Merged
model

Community
consensus

model-tsunami

Number of components 24 23 23 20

Number of connections 60 65 75 57

Connections/variables 2.5 2.826 3.261 2.85

Number of transmitters 3 10 9 10

Number of receivers 7 13 4 0

Number of ordinary 14 0 10 10

Complexity (transmitters to receivers) 2.333 1.3 0.444 0

Density (# connections/total # of possible connections) 0.042 0.044 0.043 0.1425
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structural metrics indicate that a more complex model was

developed by group A compared to group B, however, group

A’s model was less dense and had fewer connections. When

these small group model values are compared to the

consensus model, as the latter resulted from collaboration,

discussion and an amalgamation of the individual strengths of

the two small group models, we observed an increase in the

number of connections per variable (a strength of the group B’s

model), similar density, and reduced complexity (a strength of

group A’s model). The latter is due to the fact that complexity

(as defined in prior literature) here is merely a function of

transmitters to receivers, when the latter in the consensus

model was a value of 0, and consequently the complexity score

was thus also 0. This is most likely due to the model no longer

including receiver components but only either transmitter or

ordinary component, which could in fact be a sign of a

complex model that shows significant interlinkages and

influences between system components. These changes in

the structural metrics of the model demonstrate that

individual committee members examined and reflected upon

their personal beliefs and mental models, indicating achieve-

ment of single-loop learning (Reed et al., 2010; Jones et al.,

2011; Biggs et al., 2011).

3.2. Phase II: consensus modeling and double-loop
learning

After the committee agreed on the components and relation-

ships in the consensus model in the second workshop, the

hazard tsunami was structurally added to the model. Fifteen

relationships were defined that linked tsunami with other

components. In addition to defining the structural relation-

ship between the tsunami and community dynamics, the

community also defined a set of optimal outcomes in terms of

the desired state of their community by indicating if they

preferred that the components included in the model

increased, decreased or remained neutral with no preference.

Of the 19 components included in the consensus model, the

committee preferred that ten increase, four decrease, and they

had no preference for change in five components (Table 3).

The process of revising the model together promoted

considerable discussion and resulted in double-loop learning

among participants, with different committee group members

contributing different experiences and expertise within

different components of the model. They represented the

perspective of various stakeholders’ social networks in the
community and the outlook of larger institutions based

outside of the community, in order to support double- and

triple-loop learning, respectively (Biggs et al., 2011; Argyris,

2005). The model output of the impacts of tsunami (Fig. 5)

enlightened the committee members’ previously held beliefs

about the community’s risk to tsunami, changed their

awareness and increased overall understanding of the model

dynamics and particular components at greater risk. Biggs

et al. (2011) and Argyris (2005) define this as double- and triple-

loop learning.

3.3. Phase III: scenario modeling and triple-loop learning

After structurally relating the tsunami to the consensus model

and defining the desired influence of the adaptation strategies

on the community in the third workshop, the committee

structurally related potential adaptation strategies to the

model (Fig. 5). Less than half of the consensus model

components were directly connected to the proposed strate-

gies; anticipated direct influences of each adaptation strategy

on the consensus model components were discussed and

estimated (Table 2). These preferences serve as the commit-

tee’s adaptation strategy benchmark targets to reduce

undesirable impacts from tsunami, which were applied to

the model under the tsunami scenario state.

For the fourth and final workshop, the tsunami scenario

was then used to investigate whether the anticipated positive,

negative, and neutral influences of each adaptation strategy,

including the cumulative strategy state, were achieved (Y = 1)

or not (N = 0) under tsunami (Table 3).

The relevance of the influence of each adaptation strategy

upon particular components in the committee’s tsunami

mental model representation is driven by the committee’s

identification of which components they desire to increase (i.e.

shelter capacity), decrease (i.e. communications and logistics

demand) or remain unchanged or neutral (i.e. schools). Table 4

highlights which strategies were most effective at achieving

the desired impacts, both direct (Table 2) and indirect, due to

the dynamic interconnected nature of the consensus model.

The most effective adaptation strategy, achieving 100% of the

direct desired changes and 78% of the total desired changes,

was Strategy 4.0: increasing communitywide disaster pre-

paredness education and training. Strategy 5.0, the cumulative

state of all four strategies, did not exhibit the highest percent

of desired change, potentially due to unanticipated cumula-

tive direct and indirect dynamic influences.



Table 2 – Adaptation strategy influences on consensus model components.

Adaptation strategy Consensus model components and direct preferences

Desirable (to increase) Neutral
(to maintain)

Undesirable (to decrease)

Evacuation
capacity

# Responders/
emergency
response

Functionality
of healthcare

facilities

Disaster
knowledge,
awareness

and
planning

Shelter
capacity

Close
knitness of
community

Churches and
community

center
services

for special
populations

Communications
and logistics

demand

Demand for
infrastructure,

utilities and
potable water

Demand
for security/

safety

1.0 Build leadership

capacity in

community

1 0.5 0 1 0 0.5 0 �0.5 0 �1

2.0 # Shelters and

shelter volunteers

increased

0.5 0 0 0.25 1 0.25 0.25 0.25 0.25 0.25

3.0 Increase # evacuation

routes, protocols and

public awareness

1 0 0 0.5 0.25 0.5 0 0.25 0.25 0.25

4.0 Increase # of people

trained in disaster

preparedness

0.5 0.5 0.25 1 0.5 0.5 0 �0.5 �0.5 �0.5
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Table 3 – The effectiveness of adaptation strategies on the committee’s tsunami mental model representation.

Consensus model
components

Community
defined

outcomes

Desired change achieved (Y = 1, N = 0)

Adaptation
strategy 1

Adaptation
strategy 2

Adaptation
strategy 3

Adaptation
strategy 4

Cumulative
adaptation
strategies

Demand for infrastructure,

utilities and potable water

� 1 0 0 1 1

Communications and

logistics demand

� 0 0 0 1 0

# Visitors � 1 0 0 1 1

Demand for security/safety � 0 0 0 0 0

Close knitness of community + 1 1 1 1 1

Disaster knowledge,

awareness and planning

+ 1 1 1 1 1

# Responders/emergency

response

+ 1 1 1 1 1

Evacuation capacity + 0 0 0 1 1

Livestock + 1 1 1 1 1

Shelter capacity + 1 1 1 1 1

Functionality of healthcare

facilities

+ 1 1 1 1 1

# Residents (and families) + 0 0 1 1 1

Farmers and food supplies + 0 0 0 0 0

Businesses + 0 0 0 0 0

Shoreline (beaches and ocean) No change 0 0 0 0 1

Schools (and daycare) No change 1 1 1 1 0

Mountains and streams No change 0 0 0 0 0

Services for special populations No change 1 1 1 1 1

Usable low lying areas

(residential/businesses/farms)

No change 1 1 1 1 1

Table 4 – Percent desired changes across all strategies.

Mitigation/Adaptation Strategy % Direct Desired
Impacts Achieved

% Total Desired
Impacts Achieved

1.0 Build leadership capacity in community 100% 67%

2.0 # Shelters and Shelter volunteers increased 50% 44%

3.0 Increase # evacuation routes, protocols and public awareness 57% 56%

4.0 Increase # of people trained in disaster preparedness 100% 78%

5.0 All Strategies 80% 56%
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All strategies had a greater success rate of achieving direct

versus total desired impacts, due to explicit less desirable

influences of specific components. The committee was not

able to account for the indirect effects without using FCM.

Committee members felt they knew which adaptation strate-

gies would be most effective a priori based on their own

knowledge and their expectations did not prove correct. The

information provided by the model could not be ignored

because they built the model themselves. They also felt more

empowered to explore other options because they had learned

FCM is very useful for evaluating options in a more participa-

tory and quantitative, objective manner.

This process facilitated discussion around potential rea-

sons for why particular strategies were more or less successful

at achieving desired results, both directly and indirectly. In

particular, discussion centered on the committee stake-

holders’ behaviors, attitudes, norms and values that contrib-

ute to these root causes of relationships and influences,

illustrating triple-loop learning (Peschl, 2007; Biggs et al., 2011;
Altman and Illes, 1998). The adaptation strategies were

developed into a disaster action plan, through identification

and implementation of policy and programmatic targets, and

evaluative benchmarks which address these underlying

dynamics and root causes of vulnerability through engaging

stakeholders, over time, across the domains of influence from

the individual, social network and government to institutional

levels (Fig. 2). This outcome supports the conclusion that

single-, double- and triple-loop social learning occurred (Biggs

et al., 2011)

4. Discussion

Three different levels of social learning occurred through

iterative modeling, identification of anticipated impacts of a

tsunami, and identification of adaptation strategy efficacy via

scenario results using software that facilitated the process.

Individual reflection demonstrated single-loop learning, and
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group discussion demonstrated double- and triple-loop

learning around: (1) potential reasons for the varying success

of different strategies at achieving the desired results; and (2)

iterative revision of the disaster action plan based on the new

awareness, understanding and knowledge generated. Moni-

toring, evaluation and revision of these strategies, the action-

oriented targets and evaluative benchmarks, will be facilitated

in future committee workshops by revisiting the scenario

output and identifying whether the anticipated increase in

adaptive capacity occurred over longer time scales.

The committee’s model representations allowed the group

to engage in consensus-building via complex systems scenario

analysis, which is expected to increase anticipatory social

learning and adaptive capacity (van der Wal et al., 2014). The

findings support selection of strategies perceived to be more

‘‘effective’’ in terms of moving the community toward a

preferred state and away from an undesired state, perceived

based on the tsunami scenario results. Based on changes to

the structure of their model (Table 1) and their ability to

anticipate and define more or less desired states of their

community under the tsunami results in comparison to their

potential adaptation plans (Table 3), we contend that the

committee’s original beliefs that the strategies would not

impact the entire consensus model were challenged by results

that revealed unintended indirect negative outcomes. For

example, Strategy 3.0 was primarily linked to increasing

evacuation capacity, functionality of healthcare facilities,

close knitness of community and shelter capacity, however

this strategy also increased the demand for communications

and logistics, infrastructure and safety and security, which is

an undesirable outcome. The undesirable outcomes were

often linked with indirect effects that were difficult for the

committee to anticipate until the process facilitated the

analysis. The research framework facilitated the committee’s

transition from qualitative thinking about the community

model and an adaptation strategy’s potential impacts, to

agreement on the quantitative measures, in order to produce

the scenario output. The committee deliberated and modified

the targets and benchmarks of each strategy as they examined

the scenario-driven indirect effects, which provides additional

evidence that triple-loop learning occurred. All of the strate-

gies require participation and cooperation from the various

organizations, government agencies, community entities and

social networks represented by the committee stakeholders,

which will extend the social learning beyond the committee

network (Reed et al., 2010) and into the institutional, social and

cultural domain of influence (Biggs et al., 2011; Rodela, 2011).

Pros and cons to engaging individuals, small groups or large

collectives in modeling exist. The method presented here

combined the FCMs of small groups into a merged and

ultimately consensus representation, and allowed for com-

ponents to be freely chosen and debated by participants. This

participatory approach facilitates social learning (Reed et al.,

2010; Rodela, 2011), the pooling of diverse knowledge sets,

real-time modification of the model through discussions and

consensus-building (Gray et al., 2014), and time and resource

efficiency through selection and implementation of scenario-

tested adaptation strategies (van der Wal et al., 2014).

Constraints of this approach include the need for diverse

expertise, the inability to weight individual components or
relationships, and the issues inherent with varying power

dynamics in groups that require expert facilitation. Issues

with having different stakeholders participate during each

phase may also affect the process, if continued revision of the

model occurs. Mental Modeler was revised after it was used in

this participatory planning effort to allow users to record notes

about the components and the connections. This allows users

to understand, track and alter the rational behind the model.

Mental model representations and processes are depen-

dent upon the value, quality and diversity of information put

into the model. Construction of mental models in small groups

is time consuming, and building consensus around complex

community socio-ecological systems, particularly under sce-

narios of uncertainty-driven disturbances like tsunami and

other hazards, can be daunting. Evaluation of the learning

processes and action plan benchmarks through surveys and

FCM outcomes over time will validate whether adaptive

capacity will increase.

Community mental models are dynamic and must be

revisited as the community undergoes change, learns from

past experiences and confronts new challenges (Ozesmi and

Ozesmi, 2004). Utilizing FCM for decision-making enables

improved governance (van der Wal et al., 2014), more efficient

prioritization and implementation of funding, human

resources and adaptation strategies (Biggs et al., 2011).

Decision-making may be supplemented in a variety of ways,

including the use of Analytic Hierarchy Processes, Analytic

Network Process (Saaty, 2001) or Cost–Benefit Analyses

(Campbell and Brown, 2003), in order to constructively weigh

and deliberate which solutions are ideal, given manpower,

time and funding resource constraints. FCM will be continu-

ously utilized for Phase 3 monitoring and evaluation by the

committee, to support the committee’s achievement of their

overall goal of increasing adaptive capacity and fostering

community resilience through informed disaster planning

(van der Wal et al., 2014).

5. Conclusions

This research used a structured framework that incorporated

FCM to guide community stakeholders on the North Shore of

the Hawaiian island of O‘ahu, through single-, double- and

triple-loop social learning cycles, in order to increase expected

adaptive capacity across individual, social network and

broader institutional domains of influence. The use of FCMs

facilitated explicit representation of stakeholder group cogni-

tive maps, which served as the basis for identifying perceived

risks, assets, values and dynamics of the social, economic,

environmental and political aspects of North Shore. Delibera-

tion over anticipated impacts of tsunami and proposed

mitigation and adaptation solutions was informed through

FCM scenario output. Facilitation of this process requires great

care in promoting creative and sensitive discussions within

the solution space, while continuously guiding the community

committee through the structured project phases. The

framework and process provide a template that is best used

when adapted and modified over time, and may be amenable

for decision-making and planning in other communities,

applied to a variety of planning initiatives (e.g. disaster
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planning, climate change adaptation, and resource manage-

ment, etc.) amongst diverse multiparty groups or organiza-

tions.

The use of the Mental Modeler software, which allowed the

planning committee to examine various adaptation strategies

and determine their impacts as a group, facilitated the

committee’s social learning process. The uncertainty faced

by the committee as they strived to increase adaptive capacity

became more manageable, as they were able to agree on

quantified relationships that measured how various strategies

reduce the risks they face. Iterative participatory modeling and

evaluating change in mental model representations can serve

as empirical evidence of social learning, and are particularly

useful in community disaster planning and adaptation.
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