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1. Introduction

The Hawaiian Islands are vulnerable to natural hazards and
the impacts of climate change, due to their geographic
remoteness and large dependency upon imported food and
energy (Kaly et al., 2002). Historically, communities comprised
of native Hawaiians and long-term residents have utilized
place-based strategies to maintain their resilience, however
community members now report that fragmentation, tourism
and globalization have weakened the collective social memory
and legacy effects of past disasters (Vaughan and Ardoin,
2013). As a result, these communities are more prone to rely on
aid after a disaster occurs, which does not improve long-term
adaptive capacity (Birkmann, 2006). A comprehensive multi-
sector approach is needed to improve disaster planning and
build more resilient communities (Folke et al., 2002; Walker
et al.,, 2002). Analysis of key physical, social, economic and
environmental system factors is critical in order to reduce
vulnerability and enhance coastal resilience to long and short
term ‘“‘shocks” to these communities (Birkmann, 2006). This
includes developing methods for communities to collabora-
tively articulate the potential impacts of hazards and climate
change, in order to define the anticipated outcomes of various
adaptation strategies.

Community-based resilience planning will have a higher
probability of success if stakeholder-driven community
descriptions, community resources and the issues of concern
(Abarquez and Murshed, 2004; Adger, 2003; TRIAMS, 2006;
USAID, 2007) can be formalized into a set of scenarios that
capture the major uncertainties in the system’s future
dynamics (Walker et al., 2002). This paper outlines a method-
ology that standardizes diverse stakeholder knowledge and
management strategies in a form that maintains the integrity
of complex human understanding and is useful for analyzing
a community’s dynamics in relation to natural hazards.
Additionally, we present data that measure changes in the
community’s model over time as evidence of conceptual
change among community members. This research draws
from several distinct yet related bodies of literature on: (1)
representing individually held beliefs (e.g. mental models) in
the planning process; (2) allowing agreement or inconsisten-
cies in beliefs to be discussed as a way to facilitate structured
sociallearning; and (3) understanding how learning occurs as a
result of engaging in scenario analysis to improve the adaptive
capacity of communities in relation to environmental change.

To adapt to change, communities must be able to anticipate
a problem, collect and share knowledge about it, reflect, and
together develop a shared vision for action (Tschakert and
Dietrich, 2010). However, tools and processes that promote
such interaction in an organized and participatory manner in
real time are somewhat limited (Walker et al., 2002; Gray et al.,
2013) although significant advances have occurred in recent
years (Voinov and Bosquet, 2010). Here, we suggest that
actively representing individual and group beliefs through a
mental modeling exercise, facilitated by the development of
fuzzy-logic cognitive mapping (FCM) supports structured
deliberation around coastal hazards and provide a way for
diverse community members to construct and revise their
knowledge over time.

Mental models are individually and internally held cogni-
tions of external reality that are used to code, filter, and
interpret the external world, allowing individuals to reason,
explain and interact with their surroundings (Jones et al,,
2011). Mental model representations enable individuals to
reason and make decisions, similar to a computer simulation,
allowing different scenarios to be examined (Johnson-Laird,
1983). Sharing mental models is a conduit to improve
stakeholder communication and reduce collaboration bar-
riers, by (1) utilizing visual participatory processes contribut-
ing to clear and open communication; (2) overcoming
obstacles to incorporating multiple sources of knowledge
(Rodela, 2011; Reed et al., 2010); (3) enabling shared ownership
of a conservation plan (van der Wal et al., 2014); and (4)
improving social assessments (Biggs et al., 2011).

Change in mental models is considered to be a type of
learning (Chi, 2008). Mental models can be changed through
interactions between stakeholders of a given social network
(Reed et al., 2010) by sharing ideas through a deliberative
process that facilitates social learning. Promoting learning
through guided interaction has been found to foster under-
standing of socio-ecological systems (Walters and Holling,
1990; Walters, 1986; Reed et al., 2010; Holling, 1978). Social
learning has also been shown to foster adaptation to
environmental changes (Pahl-Wostl et al., 2007; Folke et al.,
2003), build social trust and empower diverse stakeholders
(Reed et al., 2010), by offering opportunities for groups of
individuals to challenge, negotiate and propose new norms,
policies or programs (Reed et al., 2010; Rist et al., 2007).

A social network’s characteristics also play a significant
role in the type of learning that occurs (Pahl-Wostl and Hare,
2004; Wildemeersch, 2007). These networks are not uniform
and vary across space and time scales. Some networks, such
as governmental hierarchies, may be inflexible and limit the
degree of learning that takes place, while others, such as
friendships, may be more flexible and democratic and
facilitate more rapid change in personal understanding (Reed
etal., 2010; Keen et al., 2005). The speed at which learning and
information sharing occurs within a network (Pahl-Wostl
etal., 2007; Tompkins and Adger, 2004) influences the ability of
individuals to reorganize after a hazard event and therefore
influences adaptive capacity. Fazey et al. (2007) state four
learning-related requirements for adaptation, including: (1)
the willingness to challenge and transform epistemological
and cultural ways of thinking, knowledge and behaviors
toward socio-ecological resilience from the individual to
societal level; (2) a thorough understanding of how current
practices and behaviors influence socio-ecological resilience
and re-directing them toward more sustainable goals; which
will support (3) the willingness to engage in proactive,
continuous assessment of current behavioral impacts on
sustainability, in order to inform decision-making amidst
uncertainty; and (4) the ability to change their behavior based
upon these requirements (Fazey et al., 2007).

Anticipatory learning that addresses adaptation is
expected to increase community understanding and the
ability to respond to system crises and shocks (Tschakert
and Dietrich, 2010). Community disaster planning should
provide opportunities for stakeholders to communicate
iteratively (Osbahr, 2007), evaluate risks and adaptation
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options, learn from mistakes (Adger, 2003) and innovate
(Armitage, 2005) amidst uncertainty, emerging events under
past, present and future conditions (Nelson et al., 2007) and
new information (McGray et al., 2007). The relationships
between anticipatory learning, adaptation and resilience can
be linked to Holling’s (1986, 2004) illustrations of adaptive
cycles, which identify two types of learning that may
contribute to adaptation and resilience (Tschakert and
Dietrich, 2010; Holling, 1986, 2004). The first consists of small
and fast cycles of learning, such as immediate to midterm
adaptation strategies for common and acute stressors like
floods. This impacts the second type of learning, which
consists of larger and slower cycles that elicit long-term social
memory, legacy effects and knowledge, needed to achieve
longer-term resilience and adaptation (Holling, 2004). Learn-
ing that occurs during repeated small and fast cycles is
thought to cumulatively provide a new perspective on larger
and slower cycles, helping stakeholders and communities
better adapt to system changes, although empirical evidence
to support this claim is currently lacking.

Learning is not linear, but is an iterative process with
multiple feedback or “learning loops” (Fig. 2) that not only
occurs on different temporal scales, but also differs based on
the degree of reflection that occurs (Reed et al., 2010; Jones
et al,, 2011; Biggs et al., 2011). Single-loop learning refers to
learning based on norms and beliefs that act as filters of
incoming information, particularly that which does not
resonate with previously held beliefs. This type of learning
is thought to happen when individuals represent their
knowledge at a specific moment in time (Biggs et al., 2011;
Argyris, 2005). Double-loop learning includes active question-
ing about previously held beliefs or information, which may
lead to more fundamental changes to an individual mental
model (Biggs et al., 2011; Argyris, 2005) or shared through
representation of group understanding (van der Wal et al.,
2014) which provides an opportunity for understanding to be
discussed and revised. Double-loop learning is often the
minimum target of many environmental research and
planning frameworks since it indicates a reflection, and
potential revision, of previously held beliefs (Biggs et al.,
2011). The most metacognitive form of learning is triple-loop
learning, which probes underlying norms, assumptions, and
values, and can result in changes in attitudes, and behaviors
(Peschl, 2007; Biggs et al., 2011; Altman and Illes, 1998).

2. Participatory research approach and
methods

2.1.  Mental models and fuzzy cognitive mapping (FCM)

This research uses representations of the beliefs held by
communities collected through a fuzzy-logic cognitive map-
ping (FCM) technique to facilitate social learning. Fuzzy
cognitive maps are highly structured and parameterized
versions of concept maps that represent direct and indirect
causality, combining aspects of fuzzy-logic, neural networks,
semantic networks and nonlinear dynamic systems (Glykas,
2010) in a stock-and-flow representation based upon individ-
ual or group beliefs (Gray et al., 2014). Because these cognitive

maps are a relatively simple-to-use form of semi-quantitative
modeling, they have been appropriated by a wide variety of
disciplines to understand the behaviors of many complex
systems (Glykas, 2010). This is because FCMs can be collected
using qualitatively (e.g. low, medium, high) or quantitatively
assigned weighted edges (between —1 and 1), which are easy to
collect from stakeholders that can be used to define
mathematical pairwise associations. Using these pairwise
relationships, the structure between the concepts can be used
to calculate the cumulative strength of connections between
elements with weighted edges, highlighting any domain as a
system. Further, FCM’s can be used to develop semi-
quantitative scenarios, allowing stakeholders to understand
the current and projected states of systems represented with
FCM (see Ozesmi and Ozesmi, 2004). Using FCM with
communities to represent their collective beliefs about a
particular problem allows them to: (1) represent their current
understanding and learn from each other in the modeling
building process (single-loop learning); (2) reflect critically on
their current beliefs and assumptions (double-loop learning)
after a model is constructed; and (3) run scenarios to evaluate
the completeness of their previous beliefs and assumptions
(triple-loop learning). Additionally, while FCMs are a popular
method to understand the dynamics of many social-ecological
systems (Glykas, 2010), rarely are they developed iteratively
over time with stakeholders and used as a measure of
conceptual change.

In this paper, we propose a conceptual framework that
seeks to address the micro (short-term), meso (short-to-
midterm) and macro (long-term) scales of social learning to
promote change in a community’s individual and group
beliefs, as well as to achieve single-, double- and triple-loop
learning (respectively) utilizing a ‘mental modeling’ exercise
(Gray et al., 2013). Ultimately, this facilitates construction of
measurable targets and benchmarks for community risk
reduction and adaptation planning.

A novel computer-based FCM tool called Mental Modeler
(Gray et al., 2013) was used during the planning process to: (1)
iteratively construct and revise visual representations of
stakeholders’ mental models, to ultimately develop a consen-
sus community model; (2) use these models to understand
how communities anticipate being impacted by hazards; (3)
define preferred targets for components of their community;
and (4) model the impact of potential adaptation strategies.
This approach facilitates the exploration of the dynamics and
learning features of mental model representations by collect-
ing and standardizing individual and collective community
knowledge using simple modeling tasks (Ozesmi and Ozesmi,
2004; Gray et al., 2012) in a real-time and participatory
modeling environment (Gray et al., 2013).

2.2.  Study location and participants

The study took place on the North Shore of the Island of O‘ahu
(North Shore), a semi-rural area with tourism as the primary
economic sector, followed by agriculture (DBEDT, 2011). The
study area includes the communities of Mokuleia, Waialua,
Haleiwa, Pupukea and Sunset Beach, up until Turtle Bay Resort
(Fig. 1), an area with an estimated population of 25,000 long-
term residents, transient residents, visitors and employees of
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Fig. 1 - Map of North Shore, O‘ahu.
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local businesses at any given time (DBEDT, 2011). The North
Shore is at-risk to multiple coastal hazards, and when
experiencing a hazard becomes isolated, since access roads
quickly become inundated. A single two-lane coastal highway
provides the only entrance/exit from the area, and heavy
weekend traffic is a major concern for residents. Since the
North Shore is at-risk to hurricane, coastal storms, flooding,
landslides and rock fall, wildfire, earthquake, and tsunami
generated from earthquakes or massive landslides, originat-
ing anywhere in the Pacific Ring of Fire or the neighboring Big
Island (Fletcher et al., 2002; State of Hawai‘i Hazard Mitigation
Plan, 2010), this road can become closed, leaving the
population stranded. The North Shore was engaged as the
case study site, hereafter referred to as the “community” or
socio-ecological system of interest, via the community
disaster committee, to demonstrate our planning process
based on their (1) geographic isolation and physical vulnera-
bility to natural hazards (HSCD, 2010) and climate change
(DBEDT, 2011; Fletcher et al.,, 2002); and (2) the desire of
community members and stakeholders to engage in a
resilience research and planning process.

To engage the community in a local planning process,
researchers collaborated with a pre-organized community-
based disaster preparedness committee, which formed in 2008
following a flooding disaster event in order to raise awareness
and increase community preparedness for disasters. The
North Shore Community Disaster Planning Committee (here-
after referred to as committee) agreed to engage in a participa-
tory modeling process to assist them with developing a
community disaster plan, wherein representatives from the
communities and partnering stakeholders would participate
in a series of planning workshops. Four participatory mental
modeling workshops were held with the committee. Work-
shop participation ranged from 6 to 15 people, where 10
participants attended one workshop, five participants
attended two, two participants attended three, and three
participants attended all four workshops. The committee had
been working together over a long period of time, and made
significant efforts to engage all key stakeholder groups such

that the group represented a diverse cross-section of the
community’s diverse residents, businesses and various local,
County and State organizations and institutions. The com-
mittee included community leaders, governmental emergen-
cy management departments at the County and State levels,
non-governmental organizations including the American Red
Cross, faith-based organizations, public health nurses, private
landowners, the Port Authority, businesses via the North
Shore Chamber of Commerce, and police officers. Given the
committee’s history and established governance structure,
the committee had a well-organized electronic communica-
tion protocol that assisted in keeping everyone engaged in the
process, albeit not being able to attend a particular meeting.

2.3.  Research framework

To facilitate social learning and disaster planning in the
participatory workshops, we used an FCM-based software
called Mental Modeler (Gray et al., 2013), which allowed the
committee to iteratively represent and revise their collective
understanding throughout the process. Using an FCM ap-
proach in a three-phase process, project facilitators standard-
ized, aggregated and revised the committee’s understanding
of the structure and dynamics of the community in relation to
a tsunami hazard, that which the committee identified as their
top concern. Each phase was designed to guide the committee
through higher order learning loops (Fig. 2) across short to
long-term time scales, implicating influence extending from
the individual stakeholder-scale, to social network and
ultimately institutional domains.

Phase I focused on project organization and a workshop
targeting short-term single-loop learning of individual stake-
holders of the committee, through the development of two
small group shared models of their community. Phase II
included merging the small group mental model representa-
tions, building consensus on the structure and dynamics of
their community, and understanding the potential impacts of
tsunami in order to target double-loop learning within the
social network domain of influence. Through runningiterative
scenarios representing the anticipated impacts of a tsunami,
compared with potential impacts under proposed adaptation
strategies, Phase III enabled institutional-level processes
through challenging local to State-level plans and protocols
influencing tsunami risk, eliciting triple-loop, longer-term
learning. The four most effective adaptation strategies for
achieving disaster-planning targets were examined more
closely by the committee and developed into an implemen-
table action plan, including benchmarks for monitoring and
evaluation.

2.4. Phase I: small group modeling and single-loop
learning

Occurring in the micro time scale of social learning, the first
phase focused on consensus-building with the committee
around community adaptation planning procedures, methods
and goals, representing their current understanding of their
community socio-ecological dynamics. These included social,
political, cultural, environmental, institutional, physical and
environmental components and the influential relationships
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Fig. 2 - Conceptual planning and social learning framework.

between them. The first workshop consisted of dividing the
committee into two small groups of 7 and 8, respectively,
representing diverse community, governmental and institu-
tional constituents. These small groups were charged with
developing fuzzy-logic cognitive maps of their community
based on their current beliefs, expertise and experiences. To
facilitate this, the two small groups completed the following
activities: (1) brainstormed the key components, assets and
resources that group members’ perceived to comprise their
community system; and (2) defined the dynamic and
networked relationship between these components, in terms
of their direction (unidirectional or bidirectional) and degree
(low, medium, or high) of positive or negative influence
between components.

To develop their models, community members used the
Mental Modeler software (www.mentalmodeler.org), which
facilitates the FCM process, allowing components and the
relationships between components to be defined based on
automated FCM parameters. Qualitative symbologies of
positive (+), negative (—) and neutral (0) (no influence between
concepts) relationships are thus translated by the software
into quantitative values, varying from low (0.25), medium (0.5)
and high (1.0). These components and their relationships were
considered to represent the small group’s understanding of
their community’s dynamics at the start of the planning
process.

Fig. 3represents a FCM constructed using Mental Modeler for
one small group. The blue lines indicate positive relationships
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and the red lines indicate negative relationships, with arrows
indicating directionality of the component influencing the
other. Line thickness indicates the strength of relationships
between variables, with thicker lines indicating stronger
relationships. For example, the component ‘Pets/livestock”
influenced the component ‘“Evacuation,” such that this
component increases jointly with “Evacuation.” However,
“Evacuation” increasing is not expected to increase ‘“Pets/
livestock.” In other cases, the influence runs in both directions,
asisthe case with “First Responders” and “Disaster awareness
and planning.” Thus, individuals were presented with new
ideas from various members, challenging individual mental
models or understandings of community. This initial phase
generated much discussion as the group debated the commu-
nity system model and definitions of its components, resulting
in first-order (e.g. single-loop learning) understanding of their
community dynamics (Biggs et al., 2011; Argyris, 2005).

In between the first and second workshop, the two small
group mental model representations were merged into one by
constructing an adjacency matrix (Ozesmi and Ozesmi, 2004;
Laszlo et al, 1996; Kosko, 1987, 1992a,b) using a mean
approach, averaging values for common components and
relationships, sometimes referred to as a “social cognitive
map” (Ozesmi and Ozesmi, 2004). Merging the two group
models into a single model was done in order to create a
representation of community dynamics that included both
groups’ beliefs and relationships (e.g. a positive value in one
small group model and a negative value in the other decreased
the strength of the causal relationship, whereas agreement
reinforced it) (Kosko, 1992a,b). For example, one small group

purported that the impact of the number of visitors would
have a low negative influence on the component “Commu-
nications and Logistics Demand” whereas the other small
group indicated a high positive influence; this conflicting
valuation decreased the strength of the causal relationship to
be a low positive influence, whereas agreement on the
influence of the component “# of First Responders” was
indicated to have a high positive influence on “Disaster
Awareness and Planning” in both small groups, the resulting
consensus value was thus a reinforced high positive value.
This provided a representation of the knowledge shared by
both small groups, to be used for revision and debate about the
structure and dynamics of the model of their community.

2.5.  Phase II: consensus modeling and double-loop
learning

Taking place in the meso-scale, the second workshop was
designed to enable the committee, then participating as a
single larger group, to evaluate a representation of the
combined knowledge of the two groups, and use this model
as artifact for discussion and revision of their ideas, in order to
produce a singular model that represented consensus among
committee members. To facilitate this, participants evaluated
the social cognitive map produced by the two groups during
the second workshop. All of the concepts included by
combining the first two models were evaluated individually,
until a final list of components was agreed upon. Secondly, all
relationships and their degree of influence between compo-
nents were evaluated until overall agreement was reached
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(Fig. 4). As the entire committee continued to examine the
merged community model, and later refined it as the
consensus community model under tsunami, the active
questioning of the groups’ understanding of the community
system led to changes to the committee’s shared representa-
tion of the group’s understanding. According to Biggs et al.
(2011) and Argyris (2005), this indicates that double-loop
learning has occurred, as the initial community model
representation was altered to become a new representation
of knowledge distinct from the committee’s understanding at
the onset of the planning process.

2.6.  Phase III: scenario modeling and triple-loop learning

At the end of the second workshop following the consensus
model development, the committee structurally added the
hazard tsunami to their community model, identifying the
direct relationships and the degree of influence that a
tsunami might have on the components included in the
consensus model. This allowed for the impact of a tsunami to
be calculated using the FCM scenarios (Ozesmi and Ozesmi,
2004) constructed using Mental Modeler (Gray et al., 2013), in
order to illustrate how a tsunami might affect each
component either directly or indirectly based on the
dynamics defined in the consensus model. Thus, the total
impacts of a tsunami, as represented by the relative change
in each component in the community system, could be
examined in the third workshop.

The third workshop began with a review of the tsunami
scenarios results, along with a discussion of potential
strategies that might prevent (avoid), mitigate or enable
adaptation around the unwanted outcomes. Collectively,
the committee generated four distinct adaptation strategies
(Table 2), which were added as components and structurally
related to the consensus model. Adding each strategy to the
model defined the perceived manner in which each strategy
was anticipated to relate to the functional dynamics of the
community. Next, scenarios were again run, which included
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evaluating the relative impact of each adaptation strategy in
relation to the tsunami scenario (Fig. 5).

Finally, a fourth workshop was conducted to review these
scenario outcomes, in order to quantify the efficacy of the
proposed adaptation strategies in achieving the desired
results and addressing the underlying root causes of vulnera-
bility. The committee categorized their preferences for a
change in value for each concept included in the consensus
model as desirable to increase, desirable to decrease or no preference
(Tables 2 and 3), in order to better evaluate the scenario results
(Fig. 5). The committee discussed the output for each strategy,
focusing on the potential underlying causes of the negative
impacts. The indirect relationships, which were not anticipat-
ed by committee members, resulted in a more thorough
examination of each strategy.

3. Results

3.1. Phase I: small group modeling and single-loop
learning

Evidence of the conceptual change that occurred as individu-
als learned from each other, is based on comparing the
structural metrics in the small group, merged and consensus
models (Table 1). Workshop 1 facilitated the building of two
small group models representing the understanding of the
community as they began the planning process. These models
included 24 and 23 concepts with 60 and 65 relationships
defined, respectively. Following Workshop 1, these models
were merged into a common model, with 23 components and
75 connections, which was utilized as an artifact for discus-
sion and further revision to yield a consensus model
(Workshop 2) with 20 concepts and 57 connections. When
the structure of the two small group models are compared to
the structure of the merged model and the following
consensus model, group knowledge about the major concepts
and connection between concepts was refined, since the
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Fig. 4 - Community consensus model collected from the community.
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number of concepts included in the model was reduced
through deliberation (from 24 to 23, and finally 20), along with
refinement of the number of connections (from 75 to 57) due in
part to the reduction in the number of components. This
provides evidence that individuals reflected upon their beliefs
of the community system, learned from each other over
participatory discussions of the model iterations, improved
their understanding of their community system. This is
therefore proposed as evidence of single-loop learning among
workshop participants (Reed et al., 2010; Fazey et al., 2007).
The number of connections to the number of variables or
connections represented measures the degree of connected-
ness between concepts, which increased from 2.5 and 2.826 in
the first workshop small group models, to 3.261 in the merged
model, and 2.85 in the consensus model, again likely due to the
decrease in the total number of components and the
connections between them. These progressive changes in

model metrics indicate that collaboration and knowledge-
sharing resulted in a more connected perception and
understanding of the system, illustrating social learning (Reed
etal.,, 2010; Fazey et al., 2007) and provide evidence that single-
loop and double-loop learning occurred.

In addition, each concept included in the model can be
categorized as a transmitter variable (arrow only defined
outward from concepts with no directed relationships flowing
into variables), receiver variable (arrow only defined inward
toward a concept with no directed relationships flowing out
from a variable) or ordinary variable (arrow flowing into and
out from a variable). The relationship between transmitter and
receiving variables provides a “complexity score” (Ozesmiand
Ozesmi, 2004; Gray et al., 2014) for models, which signifies
whether systems are perceived to be less complex when many
transmitters are represented with only a few outcomes
(receiver variables) of those pressures represented. The



ENVIRONMENTAL SCIENCE & POLICY 45 (2015) 109-122

117

Table 1 - Structural metrics of the small group models, merged model and community consensus model, under tsunami

only.
Structural metric Small group Small group Merged Community
A model B model model consensus
model-tsunami
Number of components 24 23 23 20
Number of connections 60 65 75 57
Connections/variables 2.5 2.826 3.261 2.85
Number of transmitters 3 10 9 10
Number of receivers 7 13 4 0
Number of ordinary 14 0 10 10
Complexity (transmitters to receivers) 2.333 1.3 0.444 0
Density (# connections/total # of possible connections) 0.042 0.044 0.043 0.1425

structural metrics indicate that a more complex model was
developed by group A compared to group B, however, group
A’s model was less dense and had fewer connections. When
these small group model values are compared to the
consensus model, as the latter resulted from collaboration,
discussion and an amalgamation of the individual strengths of
the two small group models, we observed an increase in the
number of connections per variable (a strength of the group B’s
model), similar density, and reduced complexity (a strength of
group A’s model). The latter is due to the fact that complexity
(as defined in prior literature) here is merely a function of
transmitters to receivers, when the latter in the consensus
model was a value of 0, and consequently the complexity score
was thus also 0. This is most likely due to the model no longer
including receiver components but only either transmitter or
ordinary component, which could in fact be a sign of a
complex model that shows significant interlinkages and
influences between system components. These changes in
the structural metrics of the model demonstrate that
individual committee members examined and reflected upon
their personal beliefs and mental models, indicating achieve-
ment of single-loop learning (Reed et al., 2010; Jones et al.,
2011; Biggs et al., 2011).

3.2 Phase II: consensus modeling and double-loop
learning

After the committee agreed on the components and relation-
ships in the consensus model in the second workshop, the
hazard tsunami was structurally added to the model. Fifteen
relationships were defined that linked tsunami with other
components. In addition to defining the structural relation-
ship between the tsunami and community dynamics, the
community also defined a set of optimal outcomes in terms of
the desired state of their community by indicating if they
preferred that the components included in the model
increased, decreased or remained neutral with no preference.
Of the 19 components included in the consensus model, the
committee preferred that ten increase, four decrease, and they
had no preference for change in five components (Table 3).
The process of revising the model together promoted
considerable discussion and resulted in double-loop learning
among participants, with different committee group members
contributing different experiences and expertise within
different components of the model. They represented the
perspective of various stakeholders’ social networks in the

community and the outlook of larger institutions based
outside of the community, in order to support double- and
triple-loop learning, respectively (Biggs et al., 2011; Argyris,
2005). The model output of the impacts of tsunami (Fig. 5)
enlightened the committee members’ previously held beliefs
about the community’s risk to tsunami, changed their
awareness and increased overall understanding of the model
dynamics and particular components at greater risk. Biggs
etal. (2011) and Argyris (2005) define this as double- and triple-
loop learning.

3.3.  Phase III: scenario modeling and triple-loop learning

After structurally relating the tsunami to the consensus model
and defining the desired influence of the adaptation strategies
on the community in the third workshop, the committee
structurally related potential adaptation strategies to the
model (Fig. 5). Less than half of the consensus model
components were directly connected to the proposed strate-
gies; anticipated direct influences of each adaptation strategy
on the consensus model components were discussed and
estimated (Table 2). These preferences serve as the commit-
tee’s adaptation strategy benchmark targets to reduce
undesirable impacts from tsunami, which were applied to
the model under the tsunami scenario state.

For the fourth and final workshop, the tsunami scenario
was then used to investigate whether the anticipated positive,
negative, and neutral influences of each adaptation strategy,
including the cumulative strategy state, were achieved (Y = 1)
or not (N = 0) under tsunami (Table 3).

The relevance of the influence of each adaptation strategy
upon particular components in the committee’s tsunami
mental model representation is driven by the committee’s
identification of which components they desire to increase (i.e.
shelter capacity), decrease (i.e. communications and logistics
demand) or remain unchanged or neutral (i.e. schools). Table 4
highlights which strategies were most effective at achieving
the desired impacts, both direct (Table 2) and indirect, due to
the dynamic interconnected nature of the consensus model.
The most effective adaptation strategy, achieving 100% of the
direct desired changes and 78% of the total desired changes,
was Strategy 4.0: increasing communitywide disaster pre-
paredness education and training. Strategy 5.0, the cumulative
state of all four strategies, did not exhibit the highest percent
of desired change, potentially due to unanticipated cumula-
tive direct and indirect dynamic influences.



Table 2 - Adaptation strategy influences on consensus model components.

Consensus model components and direct preferences

Adaptation strategy

Desirable (to increase)

Neutral
(to maintain)

Undesirable (to decrease)

Evacuation # Responders/ Functionality  Disaster Shelter Close Churches and Communications Demand for Demand
capacity emergency  of healthcare knowledge, capacity knitness of community and logistics infrastructure, for security/
response facilities awareness community center demand utilities and safety
and services potable water
planning for special
populations
1.0 Build leadership 1 0.5 0 1 0 0.5 0 -0.5 0 -1
capacity in
community
2.0 # Shelters and 0.5 0 0 0.25 1 0.25 0.25 0.25 0.25 0.25
shelter volunteers
increased
3.0 Increase # evacuation 1 0 0 0.5 0.25 0.5 0 0.25 0.25 0.25
routes, protocols and
public awareness
4.0 Increase # of people 0.5 0.5 0.25 1 0.5 0.5 0 -0.5 -0.5 -0.5

trained in disaster
preparedness

811
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Table 3 - The effectiveness of adaptation strategies on the committee’s tsunami mental model representation.

Consensus model Community Desired change achieved (Y =1, N =0)
components defined
outcomes
Adaptation Adaptation Adaptation Adaptation Cumulative
strategy 1 strategy 2 strategy 3 strategy 4 adaptation
strategies
Demand for infrastructure, - 1 0 0 1 1
utilities and potable water
Communications and - 0 0 0 1 0
logistics demand
# Visitors - 1 0 0 1 1
Demand for security/safety - 0 0 0 0 0
Close knitness of community + 1 1 1 1 1
Disaster knowledge, + 1 1 1 1 1
awareness and planning
# Responders/emergency + 1 1 1 1 1
response
Evacuation capacity + 0 0 0 1 1
Livestock + 1 1 1 1 1
Shelter capacity + 1 1 1 1 1
Functionality of healthcare + 1 1 1 1 1
facilities
# Residents (and families) + 0 0 1 1 1
Farmers and food supplies + 0 0 0 0 0
Businesses + 0 0 0 0 0
Shoreline (beaches and ocean) No change 0 0 0 0 1
Schools (and daycare) No change 1 1 1 1 0
Mountains and streams No change 0 0 0 0 0
Services for special populations No change 1 1 1 1 1
Usable low lying areas No change 1 1 1 1 1

(residential/businesses/farms)

Table 4 - Percent desired changes across all strategies.

Mitigation/Adaptation Strategy

% Total Desired
Impacts Achieved

% Direct Desired
Impacts Achieved

1.0 Build leadership capacity in community 100% 67%
2.0 # Shelters and Shelter volunteers increased 50% 44%
3.0 Increase # evacuation routes, protocols and public awareness 57% 56%
4.0 Increase # of people trained in disaster preparedness 100% 78%
5.0 All Strategies 80% 56%

All strategies had a greater success rate of achieving direct
versus total desired impacts, due to explicit less desirable
influences of specific components. The committee was not
able to account for the indirect effects without using FCM.
Committee members felt they knew which adaptation strate-
gies would be most effective a priori based on their own
knowledge and their expectations did not prove correct. The
information provided by the model could not be ignored
because they built the model themselves. They also felt more
empowered to explore other options because they had learned
FCM is very useful for evaluating options in a more participa-
tory and quantitative, objective manner.

This process facilitated discussion around potential rea-
sons for why particular strategies were more or less successful
at achieving desired results, both directly and indirectly. In
particular, discussion centered on the committee stake-
holders’ behaviors, attitudes, norms and values that contrib-
ute to these root causes of relationships and influences,
illustrating triple-loop learning (Peschl, 2007; Biggs et al., 2011;

Altman and Illes, 1998). The adaptation strategies were
developed into a disaster action plan, through identification
and implementation of policy and programmatic targets, and
evaluative benchmarks which address these underlying
dynamics and root causes of vulnerability through engaging
stakeholders, over time, across the domains of influence from
the individual, social network and government to institutional
levels (Fig. 2). This outcome supports the conclusion that
single-, double- and triple-loop social learning occurred (Biggs
et al,, 2011)

4, Discussion

Three different levels of social learning occurred through
iterative modeling, identification of anticipated impacts of a
tsunami, and identification of adaptation strategy efficacy via
scenario results using software that facilitated the process.
Individual reflection demonstrated single-loop learning, and
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group discussion demonstrated double- and triple-loop
learning around: (1) potential reasons for the varying success
of different strategies at achieving the desired results; and (2)
iterative revision of the disaster action plan based on the new
awareness, understanding and knowledge generated. Moni-
toring, evaluation and revision of these strategies, the action-
oriented targets and evaluative benchmarks, will be facilitated
in future committee workshops by revisiting the scenario
output and identifying whether the anticipated increase in
adaptive capacity occurred over longer time scales.

The committee’s model representations allowed the group
to engage in consensus-building via complex systems scenario
analysis, which is expected to increase anticipatory social
learning and adaptive capacity (van der Wal et al., 2014). The
findings support selection of strategies perceived to be more
“effective” in terms of moving the community toward a
preferred state and away from an undesired state, perceived
based on the tsunami scenario results. Based on changes to
the structure of their model (Table 1) and their ability to
anticipate and define more or less desired states of their
community under the tsunami results in comparison to their
potential adaptation plans (Table 3), we contend that the
committee’s original beliefs that the strategies would not
impact the entire consensus model were challenged by results
that revealed unintended indirect negative outcomes. For
example, Strategy 3.0 was primarily linked to increasing
evacuation capacity, functionality of healthcare facilities,
close knitness of community and shelter capacity, however
this strategy also increased the demand for communications
and logistics, infrastructure and safety and security, which is
an undesirable outcome. The undesirable outcomes were
often linked with indirect effects that were difficult for the
committee to anticipate until the process facilitated the
analysis. The research framework facilitated the committee’s
transition from qualitative thinking about the community
model and an adaptation strategy’s potential impacts, to
agreement on the quantitative measures, in order to produce
the scenario output. The committee deliberated and modified
the targets and benchmarks of each strategy as they examined
the scenario-driven indirect effects, which provides additional
evidence that triple-loop learning occurred. All of the strate-
gies require participation and cooperation from the various
organizations, government agencies, community entities and
social networks represented by the committee stakeholders,
which will extend the social learning beyond the committee
network (Reed et al., 2010) and into the institutional, social and
cultural domain of influence (Biggs et al., 2011; Rodela, 2011).

Pros and cons to engaging individuals, small groups or large
collectives in modeling exist. The method presented here
combined the FCMs of small groups into a merged and
ultimately consensus representation, and allowed for com-
ponents to be freely chosen and debated by participants. This
participatory approach facilitates social learning (Reed et al.,
2010; Rodela, 2011), the pooling of diverse knowledge sets,
real-time modification of the model through discussions and
consensus-building (Gray et al., 2014), and time and resource
efficiency through selection and implementation of scenario-
tested adaptation strategies (van der Wal et al, 2014).
Constraints of this approach include the need for diverse
expertise, the inability to weight individual components or

relationships, and the issues inherent with varying power
dynamics in groups that require expert facilitation. Issues
with having different stakeholders participate during each
phase may also affect the process, if continued revision of the
model occurs. Mental Modeler was revised after it was used in
this participatory planning effort to allow users to record notes
about the components and the connections. This allows users
to understand, track and alter the rational behind the model.

Mental model representations and processes are depen-
dent upon the value, quality and diversity of information put
into the model. Construction of mental models in small groups
is time consuming, and building consensus around complex
community socio-ecological systems, particularly under sce-
narios of uncertainty-driven disturbances like tsunami and
other hazards, can be daunting. Evaluation of the learning
processes and action plan benchmarks through surveys and
FCM outcomes over time will validate whether adaptive
capacity will increase.

Community mental models are dynamic and must be
revisited as the community undergoes change, learns from
past experiences and confronts new challenges (Ozesmi and
Ozesmi, 2004). Utilizing FCM for decision-making enables
improved governance (van der Wal et al., 2014), more efficient
prioritization and implementation of funding, human
resources and adaptation strategies (Biggs et al, 2011).
Decision-making may be supplemented in a variety of ways,
including the use of Analytic Hierarchy Processes, Analytic
Network Process (Saaty, 2001) or Cost-Benefit Analyses
(Campbell and Brown, 2003), in order to constructively weigh
and deliberate which solutions are ideal, given manpower,
time and funding resource constraints. FCM will be continu-
ously utilized for Phase 3 monitoring and evaluation by the
committee, to support the committee’s achievement of their
overall goal of increasing adaptive capacity and fostering
community resilience through informed disaster planning
(van der Wal et al., 2014).

5. Conclusions

This research used a structured framework that incorporated
FCM to guide community stakeholders on the North Shore of
the Hawaiian island of O‘ahu, through single-, double- and
triple-loop social learning cycles, in order to increase expected
adaptive capacity across individual, social network and
broader institutional domains of influence. The use of FCMs
facilitated explicit representation of stakeholder group cogni-
tive maps, which served as the basis for identifying perceived
risks, assets, values and dynamics of the social, economic,
environmental and political aspects of North Shore. Delibera-
tion over anticipated impacts of tsunami and proposed
mitigation and adaptation solutions was informed through
FCM scenario output. Facilitation of this process requires great
care in promoting creative and sensitive discussions within
the solution space, while continuously guiding the community
committee through the structured project phases. The
framework and process provide a template that is best used
when adapted and modified over time, and may be amenable
for decision-making and planning in other communities,
applied to a variety of planning initiatives (e.g. disaster
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planning, climate change adaptation, and resource manage-
ment, etc.) amongst diverse multiparty groups or organiza-
tions.

The use of the Mental Modeler software, which allowed the
planning committee to examine various adaptation strategies
and determine their impacts as a group, facilitated the
committee’s social learning process. The uncertainty faced
by the committee as they strived to increase adaptive capacity
became more manageable, as they were able to agree on
quantified relationships that measured how various strategies
reduce therisks they face. Iterative participatory modeling and
evaluating change in mental model representations can serve
as empirical evidence of social learning, and are particularly
useful in community disaster planning and adaptation.
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